
Providing Fine-Grained Access Control For Mobile Programs
Through Binary Editing�

Raju Pandey Brant Hashii
Parallel and Distributed Computing Laboratory

Computer Science Department
University of California, Davis, CA 95616
fpandey, hashiig@cs.ucdavis.edu

Technical Report TR-98-08

Abstract

With the advent of WWW, there is considerable interest in programs that can migrate from one host
to another and execute. For instance, Java programs are increasingly being used to add dynamic content
to a web page. When a user accesses the web page through a browser, the browser migrates the Java
program and executes it at the user’s site. Mobile programs are appealing because they support efficient
utilization of network resources and extensibility of information servers. However, since they cross
administrative domains, they have the ability to access a host site’s protected resources. For instance, they
can potentially read a user’s private files, access and modify personal information, and steal proprietary
information.

In this paper, we present a novel approach for allowing a site to protect and control the local resources
that external Java programs can access. In this approach, a site uses a declarative policy language to
specify a set of constraints on accesses to local resources and the conditions under which they apply.
A set of code transformation tools enforce these constraints on a Java program by integrating the code
for checking access constraints into the program and the site’s resource definitions. Executions of the
resulting modified mobile program and resources satisfy all access constraints, thereby protecting the
site’s resources. Because this approach does not require resources to make an explicit call to a reference
monitor, as implemented in the Java runtime system, the approach does not depend upon a particular
runtime system implementation.

�This work is supported by the Defense Advanced Research Project Agency (DARPA) and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-1-0221. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Project Agency (DARPA), Rome Laboratory, or the U.S. Government.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Providing Fine-Grained Access Control for Mobile Programs Through
Binary Editing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

With the advent of the WWW [3], there is considerable interest in developing runtime infrastructures for the
mobile computing model. In the mobile computing model [5, 22, 4], programs, calledmobile programs in
this paper, have the ability to compute at a host, stop their execution, migrate to another host, and restart their
executions. The mobile computing model is appealing because it supports efficient utilization of network
resources and extensibility of information servers. Also, the model is ideally suited for extensible distributed
system structures such as the Internet.

Although appealing from both system design and extensibility points of view, the mobile computing
model raises a number of security concerns, namely:

� Authorization: Is the mobile program authorized to execute at a host?

� Safety: Does the mobile program have the ability to interfere with the executions of other programs
(including the operating system and runtime systems) by reading and writing into their name spaces?

� System resource allocation: Does the mobile program have the ability to starve programs by con-
suming too much of system resources (such as cpu, memory and disk)?

� Access control: Can the mobile program access local resources that it is not allowed to access?

While a host must protect itself against all of the above security problems, our focus in this paper is primarily
on the problem of access control. We emphasize that the access control problem for mobile programs is
identical to the access control problem for applets [2, 11]. A solution for the access control problem for
mobile programs is, thus, applicable for applets as well.

We describe the access control problem in the

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��������

���
���
���
���
���
���

���
���
���
���
���
���

migrate

Runtime System

P

R1

R2

R3

Pe

HostH1

Figure 1: Resource accesses by mobile programs

mobile computing domain by first examining how
mobile programs access resources at a site. In fig-
ure 1, we show a program,P, that migrates to a
host,H1. The mobile program runtime system at
the host constructs an execution image,Pe, of the
program by binding the local resources (such as
R1, R2, andR3) with P. Note that the binding in-
volves linking, either statically or dynamically, all
code thatH1 provides for accessing the local re-
sources. The runtime system then creates an ex-
ecution environment forP and start its execution.
During the execution,P accesses the local resources by invoking methods on them.

The access control problem involves allowing a site to control a mobile program’s ability to access
resources such asR1, R2, andR3. Traditional operating systems [12] implement a notion of access control
by limiting accesses to specific resources that the operating systems administer. For instance, they allow
users to impose restrictions on accesses to files they own.

We note that the access control problem in the mobile computing domain differs from the traditional
access control models in many ways: First, there are no fixed set of resources that a site can administer;
different sites may define different resources. An access control mechanism, thus, cannot be based on

2

controlling accesses to specific resources. It should be applicable to any resource that a host or a user may
define and export. Second, the access control model should be customizable in that it should allow access
control policies to be changed from one site to another, one mobile program to another and one resource to
another. Third, the access control model should support a weaker notion of access control. In traditional
access control models, access control involves either allowing an access or completely denying it. In the
mobile computing domain, we argue for aconditional access control model where accesses to resources
can be conditional [17]. In other words, a site may allow a mobile program to access resources if certain
conditions are met. These conditions may depend on the state of mobile programs, state of resources, mobile
program runtime state and/or security state. For instance, a database vendor may specify that if there are
more than 20 mobile programs in the system, each mobile program can only access its database up to ten
times. In this example, a mobile program’s ability to access the database depends on a runtime system state
(number of mobile programs running) and a security state (number of times mobile programs access the
database).

Access control specification and enforcement have been studied in great detail. The different approaches
can be classified into three categories:operating system-based, runtime system-based, andlanguage-based
approaches. In the operating system-based approaches [12, 1], an operating system implements a specific
access control model which specifies how system-wide resources such as files, the network and displays
can be accessed. A site specifies its security policy within the framework of the security policy model.
The operating system enforces the security policy by checking the type of access to resources. In runtime
system-based approaches [6, 9], a runtime system enforces specific controls over accesses to various objects.
Each method first calls a security manager (or permission controller) which checks to ensure that the method
call is permitted. In language-based techniques [7, 24, 21, 14] access control policies are specified along
with a program specification. A compiler not only generates code for the program but also for enforcing
security policies.

While the OS-based and language-based approaches do support various levels of access control, each
has certain limitations. Operating system-based approaches are limited in that the access control model
applies only to the resources managed by the operating system. Usually, they cannot be extended to specify
and enforce access control over user-defined resources. The language-based approaches are also limited in
that they cannot be applied for enforcing constraints on mobile programs. This is because mobile programs
have the ability to migrate from one site to another, each with different access control policies. In many
cases, the access control policies are unknown. It is, thus, not possible to pre-compile such access control
policies in the mobile program code.

The runtime system-based approaches (especially the Java runtime system’s security model) are more
extensible in that users can define different access policies for different resources. However, enforcement of
access control policies require that implementations of resources make explicit calls to a security manager [6,
15] or an access controller [9]. This means that code for every resource must include an explicit access
control check call. The approach, thus, will not work for those resources that are not designed with security
in mind.

What is needed is a flexible and general mechanism for specifying and enforcing conditional access
control. This paper presents such a conditional access control model along with mechanisms for specifying
and enforcing access constraints. Specifically, the paper addresses the following:

� What is the notion of access control in mobile programs? The access control problem involves al-

3

lowing a site to control a mobile program’s ability to access resources. We propose an access control
model in which mobile programs can access specific resources if certain conditions are met. The
paper also presents a model of inheritance for access constraints. An important aspect of our model is
that access constraints are specified separately from both mobile program and resource definitions.

� How can access constraints be enforced? We present a novel mechanism in which access constraints
are enforced by integrating access constraint checks directly into mobile program and host resource
code. The idea of transforming binary code to enforce security is quite novel in that the access control
mechanisms can be used to define and enforce access constraints to systems that were not designed
with security in mind. We have implemented a version of the mechanism for mobile programs repre-
sented using the Java byte code [16].

� What is the performance characteristics of our approach? The performance results show that the
overhead of our approach is moderate. Further, our approach performs better than Java’s runtime
system based approach in certain cases.

This paper is organized as follows: Section 2 contains a brief overview of our approach. Section 3 contains a
description of our resource access model and how accesses to various resources can be specified. Section 4
describes an implementation of this model. Section 5 contains an analysis of the performance behavior.
Section 6 relates this approach to other related work. Section 7 contains a summary of the approach and
discussion of future work.

2 Overview

In this section, we give a brief overview of our approach. The approach implements a conditional access
control model for mobile programs through two components: an access constraint specification language,
and an access constraint enforcement tool.

2.1 Access constraint specification

The access constraint specification lan-

P R

f

(a) Traditional function invo-
cation semantic

B

P

f

R

(b) Extension of function invo-
cation semantic

Figure 2: Invocations of functions

guage is used to specify constraints over
accesses to resources. In this section,
we only present the motivation for the
language. The details can be found in
Section 3.

A mobile program accesses a re-
source by invoking methods on the re-
source. For instance, in figure 2(a), we
show that programP invokes a method
f to access resourceR. During the execution, the control jumps tof , executesf , and returns back toP upon
termination. This implements a simple access semantics in which there are no constraints on accesses toR
through f . Such an implementation allows unrestricted access toR.

Our approach is to allow a host to strengthen the access relationship betweenP and R by adding a
constraint,B (see figure 2(b)), that specifies that functionf can be invoked only if constraintB permits

4

Figure 3: Access control enforcement

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������
������
������
������
������

������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
�����
�����
�����
�����
�����

������
������
������
�����
�����
�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

������
������
������
������
������

������
������
������
������
������

������ ��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

migrate

Runtime System

Specifications

Access
Constraints

Access
Constraint
Enforcement
Tools

P

R0

1

R0

2
P0

R0

3

Resource

R2R1 R3

HostH1

it. A site, thus, restricts accesses to its resources by enumerating a set of access constraints. The access
constraints form the access control policy at the site.

2.2 Access constraint enforcement

The second component of our approach includes a set of tools that enforce the access constraints specified
by a site. We describe the overall approach taken by the tools in this section. An implementation of the tools
is described in Section 4.

In our approach, the tools enforce the access constraints by integrating the constraint checking code into
the mobile program and resource codes. For instance, in figure 3, we show how the approach works. As
P arrives atH1, the access constraint enforcement tools examineP, local access constraints, and resource
definitions to determine various access relationships. The tools then generates a set of constraint checking
code and patch the code intoP and R1, R2 and R3. The modified program then executes and accesses
resources through the constraint checking code. Executions of this code ensures thatP can access a resource
only if site-specified constraints are true.

We make a number of observations about the approach. In this approach, a site specifies access con-
straints separately from both mobile program definitions and resource definitions. This has implications on
how access control code is managed and enforced at a site:

� Both access constraints and resource definitions can be modified independently from each other. This
makes it easy for a site to specify different access constraints for different mobile programs for the
same resource. For instance, a site may specify that mobile programP can accessR under condition
Bp whereas mobile programQ can accessR under conditionBq.

� The same set of access constraints can be applied to different resources without requiring one to
copy it from one resource to another. For instance, if a single access constraintB applies to multiple
resources, it can be defined once and used for all resources.

� An important advantage of the separation is that the approach can be used for enforcing security on
resources that were not designed with security in the first place. In other words, the security compo-

5

nent can be added to a resource after it has been designed. In addition, it frees a library designer or
resource designer from thinking about security aspects when designing and implementing the library.

The rest of the paper gives the details of the access control mode, the tools, and the performance character-
istics of the approach.

3 Access control model

We now describe our access control model that a site can use for specifying access constraints. The access
control model includes two elements: a resource model for defining resources that a site wants to control,
and an access constraint specification language for expressing access control policies. We describe the two
in detail below.

3.1 Resource model

A site provides a number of local resources to a mobile program. These resources include utility libraries,
definitions for accessing files, networks and other devices, and interfaces to other resources such as propri-
etary databases. For instance, a site providing access to a weather database will export a set of interfaces that
specify how the database can be accessed. We assume that sites use Java for defining the interfaces of the
resources they export. Further, they use Java’s inheritance model for defining the resource class hierarchy.

3.2 Access constraint specification language

The access constraint specification language includes two elements: a notation for specifying constraints
over accesses to resources and an inheritance model for access constraints.

3.2.1 Access constraints

The basis for the language is derived from the observation that control over accesses to specific resources
can be defined in terms of a set of constraints over access relationships between entities of a mobile program.
The language provides a simple mechanism for specifying the conditions under which relationships among
entities (such as classes and methods) of programs are valid. Below, we describe the syntax and semantics
of the notation:

Constraints ::= f AccessConstraint g

AccessConstraint ::= deny '(' [Entity] Relationship Entity ')' when Condition

Relationship ::= 7! | a

Entity ::= ClassIdentifier | MethodIdentifier

Condition ::= BooleanExpression

A site controls accesses to various objects by defining a set of access constraints. We describe the various
terms in the grammar informally below:

� Entity: An entity denotes objects and method invocations of a mobile program. AClassIdentifier,
thus, identifies the set of objects to which a given access relationship applies. Similarly, aMethodIdentifier

denotes the set of invocations of a method.

6

B

B

B

R

(a) All access constraints

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

R
B2

Bn

B1R1

R2

Rn

(b) Selective access constraints

Figure 4: Category of access constraints

� Relationship: The composition mechanisms of a programming language allow one to define var-
ious relationships (data composition through aggregation and inheritance, and program composition
through method invocations) among the entities of a program. We are primarily interested in the
following two access relationships here:

1. Instantiate (a): A relationR1 a R2 is true if an entityR1 creates an instance of classR2.

2. Invoke (7!): A relationR1 7! R2 is true if an entityR1 invokes an entityR2.

� Condition: The termCondition denotes a boolean expression that can be defined in terms of
object states, program state (global state), mobile program runtime system state, security state, and
parameters of methods.

Semantics: An access constraint of the formdeny (R1 σ R2) when Condition specifies that ifCondition
is true, entityR1 cannot accessR2 through relationshipσ. Note thatR1 is optional. Hence, there are two
kinds of access constraints:all access constraints andselective access constraints. All access constraints
denote those constraints that do not depend on the initiator of the access relationship. For instance, as shown
in figure 4(a), no object can accessR whenB is true. Selective access constraints denote those constraints
that depend on the initiator of the access relationship. For instance, as shown figure 4(b), eachRi’s access to
R is constrained by a separateBi.
Examples of all access constraints are shown below:

Constraint Semantics

deny (a C2) when B No instances ofC2 can be created ifB is true

deny (7! C2:M2) when B MethodM2 of classC2 cannot be invoked ifB is true.

Examples of selective access constraints are:

Constraint Semantics

deny (C1:M a C2) when B MethodM of classC1 cannot create an object ofC2 if B is true.

deny (C1:M1 7! C2:M2) when B MethodM1 of classC1 cannot invokeM2 of C2 if B is true.

The access constraint enforcement tools implement the two kinds of constraints differently.
In our approach, the default is to allow all accesses unless a site specifically denies them. We call this

model theactive denial model. This is unlike most approaches in which the default is to deny all requests

7

Bc

Bs

f

f
R

Rc

Rs

Figure 5: Inheritance of access constraints

unless a site specifically allows them. We call this model theactive permission model. The active permission
model certainly provides better guarantees about system security in cases when a site makes mistakes about
specifying access control policy, the reasoning being that it is better to deny legitimate users than allow
illegitimate users.

We chose to use the active denial model because we want to construct a unified access control framework
for all method invocations. In other words, every action (every method call, object creation, deletion, etc.)
is conceivably a security relevant event which a site may want to control. For instance, we want to be able
to specify constraints such as users can invoke a function, say sqrt, only 10 times. Implementation of this
access control model using the active permission model would require that a site define permissions for every
method (including local methods and library) calls, which can be quite cumbersome. Most approaches deal
with this problem by requiring that if a site wants to enforce access control over a method M, they embed
calls to an access controller checker within M. The checker enforces an active permission model over calls
to M. All resources that do not embed calls are not checked and hence can be accessed by anyone. Such
models, thus, differentiate between resources that must be protected, through embedded calls, and those that
need not. Our approach uses a single mechanism for handling both. We note that the active denial model
can be used to implement the active permission model by representing the permission conditions through
the negation of denial conditions. However, this can be quite cumbersome. We are, therefore, looking at
ways of integrating the active permission model in our language.

3.2.2 Inheritance of access constraints

We now present an inheritance model for access constraints. The inheritance model describes what denials
to access resources mean in terms of denials to subclasses of resources. In figure 5, we show two classes,
Rc andRs. Rs is a subclass ofRc. ClassRc defines a methodf which Rs inherits. The figure also shows the
following access constraints on accesses tof from R:

deny (R 7! Rc: f) when Bc

deny (R 7! Rs: f) when Bs

In the inheritance model, constraints on access relationships are inherited by subclasses. However, a sub-
class cannot override the inherited access constraints. Access constraints can only be strengthened through
additional constraints. Hence, the resulting access constraint on invocations off on an object ofRc is:

8

deny (R 7! RS: f) when Bs_Bc

In other words, methodRs: f cannot be invoked fromR if either Bc or Bs is true. This model of inheritance
ensures that a mobile program cannot override the access constraints on methods by defining a subclass and
by weakening the access constraint. Note that an access constraint defined in a class is not reflected in its
super-classes. Note also that the model applies for access constraints ona as well. That is, if a classRC
cannot be instantiated, none of its subclasses can be instantiated.

3.2.3 Examples

We now present three examples. The first example implements a simple file access control mechanism. The
second example shows how we can use the state of the runtime system to control accesses to resources.
Finally, the last example shows how we can associate specific security states with program components and
use these states to specify access control.

Example 3.1. (File Access Control). In this example, we implement the constraints on files that a mobile
program can access. Assume that mobile programs access local files by invoking methods on the following
class:

class File f

public File(String Name);

public char Read();

public void Write(char data);

public String GetFileName();

...

g

The following constraint specifies that file “/etc/passwd” cannot be opened by the mobile program:

deny (7! File.Read)

when (#2.GetFileName() = ``/etc/passwd'')

Here we introduce a new notation within the boolean expression. The terms #1 and #2 refer to the entities
before and after the relationship, respectively. Thus, in the above expression the term#2.GetFileName()

can be readFile.GetFileName().
The access constraint that the mobile program can only read filesA andB can be specified by expressions

of the form:

deny (7! File.Read)

when ((#2.GetFileName() != ``A'') && (#2.GetFileName() != ``B''))

�

As we can see from the above example, an access constraint can control executions of methods on the basis
of program states. In certain cases, a site may wish to impose constraints on the basis of the state associated
with the runtime system or the underlying operating system. The policy language allows specification of
such constraints. We show this through an example:

9

Example 3.2. (Network access control). Assume that the following defines the interface for making net-
work connections:

Class Socket f

void Open(Host hostId, int SocketId);

void Write(Bytes data);

Bytes Read();

...

g

Also, assume that the runtime system keeps track of the number of network connections that have already
been opened. (This forms the state associated with the runtime system.) Let methodRuntimeSytem.Network.NumConnect

return the number of open connections. A constraint that limits the number of network connections to a spe-
cific upper-bound can be specified in the following manner:

deny (a Socket)

when (Runtime.Network.NumConnections() == UPPERBOUND)

�

In addition to the runtime system state, a runtime system may wish to store information for implementing
access control. We call this kind of informationsecurity state. A site may associate a security state with a
method, object, or a group of objects, and may define constraints over accesses to methods on the basis of
the security state. For instance, a security state may capture information such as the number of times method
sqrt has been called. Specific control over resources can, therefore, be specified by denying services on the
basis of the security states of resources. We present an example below that illustrates this:

Example 3.3. (Control over number of accesses). Assume that we want to implement the constraint that a
programp can invoke a function, sayf, that locks a file at most ten times in order to prevent the effective
use of a covert channel.

This can be implemented by associating an object, saySecurityState, with p. The object keeps track
of the number of timesp calls f. Let methodSecurityState.CheckCount(int x) be defined in the
following manner:

public boolean CheckCount(int x) f

if (count < x) f

UpdateCount(); // increment the counter

return(false);

g

else return(true);

The access constraint

deny (p 7! f) when SecurityState.CheckCount(10)

specifies that p can invoke f at most 10 times. �

10

migrate
Ac

ei

Mobile Program
Runtime System

s

l

R

Compiler

P0

P

Ac: Access constraint
R: Resources
l: library
s: Generated code
ei: Generated instruction

Access Constraint

HostH1

Byte Code Editor

Figure 6: Security policy enforcement of mobile programs

4 Implementation

In this section, we describe an implementation of our approach. The implementation involves enforcing a
set of access constraints on mobile programs represented using the Java byte code [16]. While the primary
goal of our research project is to develop runtime techniques for supporting secure and efficient executions
of mobile programs in general, our initial focus has been on developing support for mobile Java programs
only. We have chosen the Java byte code as the intermediate representation language because a Java byte
code-based representation of a class contains semantic information, such as types and access relationship,
which the tools can use to enforce access constraints.

4.1 Enforcement of constraints

Access constraints are enforced by modifying a mobile Java program in such a way that the execution of
the modified program satisfies the access constraints. In figure 6, we show the various steps that a mobile
program goes through before it is downloaded in the runtime system. When a program (P) arrives at a
site H1, it is transformed into a program (P0) such that an execution ofP0, in addition to implementing
the execution semantics ofP, satisfies the access constraints (Ac) imposed by the site (X). In this figure,R
specifies interfaces for the resources and libraries that the site makes available to mobile programs.l denotes
the local libraries that are linked intoP. The transformation is achieved by two tools: an access constraint
compiler and a byte code editor.

The primary goal of the access constraint compiler is to determine how the mobile program (P) and
resource definitions should be modified in order to implementAc. It does so by first determining the type
information associated with various entities in the mobile program, libraries, and the exported interfaces. It
then determines the variousinstantiate andinvoke relationships between the objects specified in the
access constraints. Finally, it generates code fragments (s) which implement specific access constraints, and
a set of editing instructions (ei) for the byte code editor. The binary editor usesei to integrate the generated

11

code (s) within P and libraries (l). The modified program (P0) is then loaded in the runtime system and
executed. We have separated the notion of editing from code generation in order to make the byte code
editor a generic tool for modifying and transforming mobile Java programs.

We now describe how we extract type and access relationships from mobile programs, generate code,
and edit the Java class file.

4.1.1 Type extraction

Type extraction involves examining Java class files to determine type definitions declared in the class files.
Type definitions are used for constructing a resource model automatically from class files as well as for
determining how a mobile program should be modified. This can be done easily since Java class files
maintain complete symbolic information about a class. Our type extraction technique makes use of two
entities within the Java class file: theconstant pool section and themethod definition section. The constant
pool is similar to a symbol table in that it contains all of the information needed to dynamically link classes.
It is an index to the symbolic references of fields, classes, interfaces and methods, as well as their names.
It also contains all literals, both string and numeric, used throughout the class. For example, amethodref

entry in the constant pool includes all the symbolic information associated with a method. It contains two
constant pool indexes: one for the class name and one for the name and type of the method. The method
definitions section defines each method and identifies them by name and signature.

4.1.2 Extraction of access relationships

The second step involves examining the mobile program code to determine invocation and instantiation rela-
tionships among different objects. The constraint compiler searches the bodies of methods for method invo-
cation instructions. In the Java byte code, four opcodes (invokevirtual,invokespecial,invokestatic,
andinvokeinterface) are used for method invocation. Each method invocation instruction has an operand
which indexes into the constant pool. Since this index is either amethodref entry or aninterfaceref
entry, the class name, method name, and signature of the method being invoked is immediately available.
Bothinstantiate andinvoke relationships are, thus, determined by searching the method bodies for one
of the four invoke opcodes and matching it with the object’s class name, method name, and signature. Note
that this information may not be entirely valid due to the dynamic binding of methods. This problem is
discussed in detail in the following sections.

4.1.3 Code generation and binary editing

We now describe the nature of the code that is generated and its integration within mobile programs. Note
that our code generation and editing involves modifying class definitions, in order to add security states
and runtime states to mobile programs, and inserting runtime checks into methods. Care must be taken in
transforming the code so that the interfaces of classes do not change.

An access constraint of the form

deny (R1 Relation R2) when B

is implemented by generating the following code:

12

if (B) then error(); // raise exception

else access R2

and patching it into the mobile program and resource definitions. The nature of the editing depends on the
nature of the access constraints. A constraint of the form

deny (Relation R2) when B

specifies constraints on accesses toR2 without any regard to objects or methods that may access the resource.
The generated code is, thus, integrated into the method definition ofR2. On the other hand, a constraint of
the form

deny (R1 Relation R2) when B

imposes conditions on accesses toR2 from R1. The generated code is, thus, patched into all accesses toR2

from R1.
Security state objects are added to a class definition by using the statement

add SecurityStateType SecurityStateOb ject to R

In addition, this object is automatically initialized in the constructor for classR. An example of how such
an object might be used is given in the performance analysis in Section 5.

4.1.4 Observations

There are a number of small details that must be taken care of whenever code is added into the middle of a
method body. First, such additions run the risk of invalidating jump instructions. Java bytecode uses relative
offsets for jumps. In other words, the operand for a jump instruction is relative to the current instruction and
not to the beginning of the method body. Adding code between a jump instruction and its target requires the
offsets to be modified. Our implementation reads the method body as a list of instruction objects. It then
creates a second list of pointers to jump instructions and their destinations. After the byte code editor adds
code to the method, the distance between these two pointers in the instruction list is recalculated. A similar
technique is used whenever a part of the Java class file refers to offsets within the method bodies, such as
the exception table.

In addition to fixing jump instruction, the Java virtual machine has two variable length instructions:
tableswitch andlookupswitch. These instructions are used to implement switch statements. The prob-
lem is that they contain 0-3 pad bytes so that their first operand begins at an address that is a multiple of four
bytes from the start of the current method. Thus, the number of these pad bytes needs to be re-calculated
and re-assigned before the jump offsets are re-calculated.

The major problem we encountered in generating and patching security code arises due to conflicts
between the Java programming language’s support for control of inheritance and our model of inheritance
for access constraints. For example, assume that classRs is a subclass ofRc. classRc defines a functionf
which is inherited inRs. Also, assume that there is an access constraint of the form:

deny (7! Rs: f) when B

13

Even thoughf is inherited fromRc, it needs to be modified in order to impose the new constraint. However,
since policies are inherited down, and not up, the method body off in Rc should not be modified. One
possible solution is to copy the definition off from Rc into Rs and proceed as before. However, iff is
declared to be final, copying is not a solution as it will be rejected by the Java byte code verifier. Although it
is possible to modify the class file forRc to remove the ’final’ constraint, such a change may lead to security
holes. One solution is to modifyRc: f () to add a runtime check to see whether the current class is an instance
of Rs. If it is, then determineB and allow or deny access. If it is not, then proceed as normal. This solution
is conceptually not elegant, as it requires a class to know about its subclasses. Another solution is to change
all of the calls tof to call a new methodf1 which then conditionally callsf .

4.2 Implementation Details

In this section we describe the code generation and code editing process for different instances of access
constraints. We assume, for the purposes of explanation, that conditionB is true if the first parameter of
R2 is equal to 5. Note that conditionB only affects the nature of code that is generated forB; it does not
affect the general pattern of the access check code or the method of editing. Also the following technique is
independent of the action that should be taken in the event that an access is denied. For our implementation,
the action amounts to throwing a security exception, although it could conceivably be any programmable
action, such as writing to an audit log, ending the mobile program, or even moving it to another site. These
assumptions, thus, does not change the emphasis of our exposition.

4.3 Implementation of all access constraints

The first set of cases involve performing editing within the definition of a called method.
We first consider a constraint of the form

deny (7! R1.f(I)V) when (#2.#1 == 5)

Recall that the term#2 refers to the entity being invoked. Thus, the term#2.#1 refers to the first parameter
of that method. Also note that the(I)V following R1.f is the Java representation of the signature of that
method. This constraint is enforced by generating code of the form shown in Figure 7 and patching the code
into the body off defined in the class file associated withR1.

In Figure 7, the number to the left of an instruction indicates the byte offset for the instruction from the
beginning of the method body. Further, a term#i in Figures 7 and 8 indicates theith entry in the constant
pool. In code segmentA of Figure 7,#67 indexes the integer constant 5, whereas#65 in code segmentB
indexes the entry for aSecurityException class and#66 indexes the entry for its constructor.

Code segmentA (Figure 7) contains the code for performing the conditional check, whereas code seg-
mentB contains code for throwing an exception if the boolean condition is true. This code is inserted into
the beginning of the method. Note that care must be taken to ensure that the security exception object and
its constructors are defined in the constant pool. If they are not, then these entries are added.

Constraints of the form

deny (a R2) when B

specify that an instance ofR2 cannot be created ifB is true. They are implemented by putting constraints on
invocations of all constructors ofR2, which, in the Java byte code, are given a special name<init>. This

14

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

A

7 goto 21

0 iload 1

2 ldc #67

4 if icmpeq 10

13 dup

17 athrow

10 new #65

14 invokespecial #66

original code for

method R1.f(I)V

B

Figure 7: The modified method R1.f(I)V

case is, thus, implemented by adding code similar to that shown in figure 7 to all methods with the name
<init>.

4.4 Implementation of selective access constraints

We now consider the cases in which methods are modified within the calling method. The most specific
case involves denying access to a method from a specific method:

deny (R1.g()V 7! R2.f(I)V) when (#2.#1 == 5)

Binary editing here involves first searching for all invocations ofR2.f(I)V within the body ofR1.g().
This involves examining the operands of all theinvoke opcodes. Since the operand references amethodref

entry in the constant pool, we can read the signature, method name, and class name of the method being
called. If these matchR2.fIV, then the generated code is inserted before the invoke opcode.

Note that the access relationship determined in this manner may only be partially correct due to the
dynamic binding of methods. It occurs in the following situation. Assume the inheritance hierarchy of
figure 5. Also, assume that methodf is invoked on an objectO of typeC:

O.f();

If entity O references an object of typeC or typeS, and constraintB is defined for the method of classC,
the above describe approach works because the constraint is inherited in the subclass as well. The problem
arises when the constraint is defined over invocations to method f ofS and objectO may reference objects of
typeC or typeS. Note that if it references objects of typeC, the generated code should not be added because
constraints are inherited from superclasses to subclasses, and not vice-versa. However, ifO references an
object of typeS, the generated code should be added in order to implement the constraint. Since the reference
type ofO cannot be determined statically, additional code must be generated that checks for the type of object
at runtime and performs access constraint checks on the basis of the type of the object. Thus, in cases where
dynamic binding may play a role, aninstanceof instruction is added to dynamically check the type of the
object. The generated code for this case is shown in Figure 8.

15

�����������
�����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

44 invokevirtual #10

rest of R2.f(I)V

E

10 istore 2

12 astore 3

14 aload 3

16 iload 2

18 aload 3

23 ifeq 44

20 instanceof #3

26 iload 2

30 if icmpeq 36

33 goto 44

28 ldc #35

39 dup

43 athrow

36 new #33

40 inokespecial #34

rest of R2.f(I)V

D

C

B

A

Figure 8: The modified method R2.f(I)V

The first step (code segmentA) is to access the object reference by popping off the operand stack (con-
taining method parameters and object reference) into local variables. It also pushes them back on the stack
(in case the method is called later). Notice that this might also need to be done if the constraint refers to
the parameters of the called method. The second step (B) involves pushing the object reference onto the
stack, performing an0 operation, and jumping to the method call if the object is not of typeR2. Term #3
is an index into the constant pool that refers to the classR2. As in the first case, code segmentC performs
the conditional check, and sectionD throws the security exception. SectionE contains the original invoke
command. Term#10 is a constant pool index that refers to the methodf with signature(I)V and classR2.
Other instances of access constraints can be implemented using the above technique.

� The access constraint

deny (R1.g()V 7! R2) when B

is used to prevent a method from invoking any method of class R2. This can be implemented in the
same manner as the previous case, except that it is carried out on all method invocations ofR2.

� The access constraint

deny (R1 7! R2.f(I)V) when B

16

class SecState f
public SecState() fcount = 0;g
public int check() f
count++; return count;

g
g

(a) Security object

add SecState SecurityState to R2

deny 7! R2.f()V when

#1.SecurityState.check() > 1000000

(b) Control access constraints

Figure 9: The binary editing approach

is used to prevent any method of class R1 from executing method f of class R2. This is also similar
to case 3. The difference is that the method body of every method defined in R1, is search for invoke
opcodes.

� The access constraint

deny (R1 7! R2) when B

is used to prevent any method of class R1 from executing any method of class R2. The algorithm used
here is a combination of previous cases, in which every invoke opcode regardless of the method name
and signature within every method of R1 is searched for method invocations of classR2 and replaced
with appropriate code.

5 Performance Analysis

In this section, we present the performance analysis of our approach. Specifically, we are interested in
analyzing the following:

� What are the time and space overheads associated with the approach?

� How does the approach perform with respect to Java runtime system’s approach for enforcing access
control?

We performed our experiments on a 266 MHz Pentium II running Red Hat Linux 5.0. The results show that
both the time and space overheads of the approach are moderate. Further, the approach performs better than
Java’s runtime system in certain cases.

5.1 Performance comparison

We first compare the performance behavior of our approach with the runtime system approach, as imple-
mented by the JDK 1.1.3.

For this experiment we created a small program to test the performance of implementing security checks
around one method invocation. Since the actual amount of work a particular site must perform depends
on both the complexity of the access control policy and the number of restricted method invocations in

17

class newSecMan extends SecurityManager f
public newSecMan() fcount = 0;g
public void checkf()

throws SecurityException f
count++;

if (count > 1000000)

throw new SecurityException();

g
int count, n;

g

(a) Security Manager

class R2 f
public void f() f
newSecMan security;

security = System.getSecurityManager();

if (security != null)

security.checkf();

g
g

(b) Resource definition

Figure 10: The Java Runtime System-based Approach

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

(a) Comparison of execution times with a policy

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

(b) Comparison of execution times without a policy

Figure 11: Comparison of executions times of our approach and Java runtime system approach

a program, implementing a single policy statement once forms a good basis for comparison. We based
our comparisons on the access control policy and classes from example 3.3. The complete code for our
approach is shown in figure 9. We implemented the same policy using Java’s security manager as shown in
figure 10. The test program calls the constrained method variable number of times. The access policy is that
the method cannot be called more than 1000000 times.

Figure 11(a) shows the execution times of our approach and the Java’s runtime system approach. In
our approach, there is an initial overhead of about 0.08 seconds for code editing, which does not occur in
the Java runtime system. However, after about 100000 method calls, our approach performs better than the
Java runtime system. This is because our approach inlines the access control check code, whereas in case
of the Java runtime system approach, each access constraint check involves making two method calls: one
to the system (to get the security manager) and another to the security manager itself. We can reduce our
cost even further by pre-editing the methods if we know that only a single access constraint will be applied
to the method (as is the case in Java runtime system approach.) Our approach, in this case, will then always
outperform the Java runtime system approach.

18

In the second experiment, we ran this experiment with no policy implemented. As shown in figure 11(b),
the Java runtime system always performs worse that our approach. This is because in the Java runtime system
approach, a method must always call the runtime system to check if there is a security manager installed,
incurring the overhead of this call. Our approach does not incur any overhead since it does not add any code
to methods that do not need to be constrained.

5.2 Overhead measurements

We have measured both the time and space related cost of modifying resources.
There are four factors that affect the execution time associated with access constraint check code gen-

eration and editing: cost associated with reading a method, the number of access constraints, types of
constraints and the number of occurrences of restricted methods in a program. Note that we do not consider
the cost of reading classfiles in our measurements since the run-time system must perform this operation
anyway.

In the first experiment, we looked at how the size of the method being modified affects the cost of
editing. Note that in ths experiment, only a single method invocation needs to be wrapped. Hence, the cost
of editing here is minimally affected by the size the method. The cost varied between 0.08 and 0.16 seconds
for methods ranging from 0 to 3200 instructions. In the second experiment, we looked at how the cost of
editing changes when the number of method calls that need to wrapped changes. We found the cost to be
proportional to number of changes required in methods.

We have also calculated the increase in size caused by adding code to class definitions. While the amount
of code that is added to a class is independent of the size of the class, it depends on the number of method
invocations that need to be wrapped and the complexity of the boolean portion of the constraint. For one
wrapper, the minimum addition size (for a true boolean constraint), is 56 bytes. For two simple boolean
expressions, it is about 206 bytes. Again, we do not expect the size of the code to bloat as is the case when
compiler inlines large amounts of code repeatedly.

6 Related work

In this section, we will look only at techniques that provide service level access control. Much of the work
on mobile program security has dealt with supporting different levels of security for Java programs. We,
therefore, first look at Java’s security model and various extensions to the model.

The initial security model [6, 15, 8] proposed by Sun for Java implements access control policies using
a Security Manager. An access control policy is created by subclassing theSecurityManager class and
setting this as the system’s security manager. Once it is set for an application, it cannot be reset. A site
then ensures that all protectable resources make an explicit call to the security manager to check if access
are allowed. If the check is not allowed, the security manager throws a security exception. Otherwise, the
control returns to the calling method. This decision is based on whether the code is trusted (i. e. from the
local file system) or untrusted (i. e. an applet downloaded from the net).

The main difference between our approach and theirs is that the JVM specifies policies in a procedural
form. This allows using the full range of Java’s language to specify any type of policy. In our approach
policies are specified in a declarative form. This allows for easier expression and analysis of policies. We
also allow declarative policies to include procedural aspects with the security state object.

19

The approach in [13] extends the Java security model to implement a domain-based access model. In
this model, Java programs are given an unforgeableSecurityToken used to identify their domain. An
AppletSecurity object plays the role of the Security Manager. It uses theSecurityToken of the applet
to determine the capabilities of that applet, throwing a security exception if the needed capability is not there.
Other capability systems have been proposed by JavaSoft, Electric Communities, and [10]. Similarly, the
approach in [18] provides a more flexible mechanisms for controlling accesses to resources. Our approach
differs from these works in that we propose a framework for implementing various security models and
policies (including the ones implemented in [13] and [18]).

Sun recently redesigned their security model [9] in order to make the security model more flexible. The
model replaces the Security Manager with anAccessController that checks if mobile programs have the
permission to access specific objects. The security model defines a policy language that allows users to state
which principles are allowed access to which objects.

Type hiding [23] is a modification of the dynamic linking process in Java in order to hide or replace
classes seen by an applet. For example, suppose the policy says that applets should not have access to the
local file system. Type hiding allows a class associated with accessing files to be replaces by a proxy class
that may throw an exception when accessed. In addition, actual classes can be replaced with proxy classes
that check their arguments and conditionally call original methods. This approach is similar to our approach
in that it will allow a site to prevent a class from invoking the methods of another class. However, it doesn’t
have the same level of granularity that we do, nor does it allow the addition of state information to mobile
programs.

The approach taken in the Fox Project [20, 19] is to associate a site specific security policy with a
program by constructing a compiler that takes user programs and site specific policies and generates both the
binary code and proof of the program’s safety with respect to the specified policies. As an external program
is migrated for execution at the kernel, the proof is validated, within the context of the site specific safety
policy, at the kernel site. Unfortunately, this approach is not suited for mobile programs where different
sites will have different security policies. Since proof generation is not automated, the proofs will need to
be re-generated by hand for each site.

7 Summary

We have described a mechanism for implementing general security policies on mobile programs. There are
two components of our approach: The first is a simple declarative access constraint language that allows a
site to restrict accesses to the objects and methods of the system. The declarative nature of the language
makes it easier to specify while still allowing a hook to express procedural policies if necessary. The sec-
ond is a set of tools that enforce the specified constraints by editing mobile programs and resources. The
approach is appealing in that a site specifies access constraints separately from both mobile program def-
initions and resource definitions. This means that both access constraints and resource definitions can be
modified independently from each other. This makes it easier for a site to specify different access constraints
for different mobile programs for the same resource. Another important advantage of the separation is that
the approach can be used for enforcing security on systems that were not designed with security in the first
place.

Our future work first involves generalization of the access control model to implement well-known se-
curity policies and constraints. Also, we are developing mechanisms for facilitating the process of building

20

security models using our approach. As part of our research in system software extensibility, we are look-
ing at techniques for integrating our technique within the existing operating system and runtime system
framework. Integration within the Java class loader is currently underway.

References

[1] Edward Amoroso.Fundamentals of Computer Security Technology. P T R Prentice Hall, 1994.

[2] K. Arnold and J. Gosling.The Java Programming Language. Addison Wesley, 1996.

[3] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and others. The World-Wide Web.
CACM, 37(8):76–82, August 1994.

[4] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applications with mobile code
paradigms. InICSE ’97. Procceddings of the 1997 international conference on Software engineer-
ing, pages 22–32, Boston, MA, May 1997.

[5] D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents: Are They a Good Idea? Technical
report, IBM T.J. Watson Research Center, 1995.

[6] J.S. Fritzinger and M. Mueller. Java Security. JavaSoft White Paper, 1996.
http://www.javasoft.com/security/whitepaper.ps.

[7] J.A. Goguen and J. Meseguer. Security Policies and Security Models. InIn Proceedings of the 1982
Symposium on Security and Privacy, pages 11–20, 1982.

[8] L. Gong. Java Security: Present and Near Future.IEEE Micro, pages 14–19, May/June 1997.

[9] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Going beyong the sand-
box: An overview of the new security architecture in the Java Development Kit 1.2. InProceedings of
the USENIX Symposium on Internet Technologies and Systems, Monterey, California, December 1997.

[10] D. Hagimont and L. Ismail. A protection scheme for mobile agents on java. InMobicom ’97, pages
215–222, Budapest, Hungary, 1997. ACM.

[11] M.A. Hamilton. Java and the shift to net-centeric computing.IEEE Computer, pages 31–39, August
1996.

[12] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating systems.Com-
munications of the ACM, 19(8):461–471, August 1976.

[13] Nayeem Islam, Rangachari Anand, Trent Jaeger, and Josyula R. Rao. A flexible security model for
using internet content.IEEE Software, 14(5):52–59, Sept.-Oct. 1997.

[14] S. Jajodia, S.Pierangela, and V.S. Subrahmanian. A Logical Language for Expressing Authorizations.
In Proceedings of the 1997 Symposium on Security and Privacy, pages 31–42, 1997.

[15] JavaSoft.JDK 1.1.1 Documentation.

21

[16] Jon Meyer and Troy Downing.Java Virtual Machine. O’Reilly, 1997.

[17] Donald V. Miller and Robert W. Baldwin. Access control by boolean expression evaluation. InFifth
Annual Computer Security Applications Conference, pages 131–139, Tucson, AZ, 1990. IEEE, IEEE
Comput. Soc. Press.

[18] N. Nagaratnam and S.B. Byrne. Resource Access Control for an Internet User Agent. InThird USENIX
Conference on Object-Oriented Technologies and Systems. USENIX, June 1997.

[19] G.C Necula. Proof-Carrying Code. InProceedings of the 24th Annual Symposium on Principles of
Programming Languages. ACM SIGPLAN-SIGACT, Jan. 1997.

[20] G.C. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. InSecond Symposium
on Operating System Design and Implementations. Usenix, Oct. 1996.

[21] Linda M. Null and Johnny Wong. The DIAMOND security policy for object-oriented databases. In
1992 ACM Computer Science Conference. Communications Proceedings, pages 49–56, Kansas City,
MO, 1992.

[22] T. Thorn. Programming Languages for Mobile Code.ACM Computing Surveys, 29(3):213–239,
September 1997.

[23] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible security architecture for
Java. Technical report, Department of Computer Science, Princeton University, 1997.

[24] T. Y. C. Woo and S. S. Lam. Authorization in Distributed Systems: A Formal Approach. InPro-
ceedings of the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, pages
33–50, 1992.

22

